The Koszul dual of a weakly Koszul module

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul Cycles

We prove regularity bounds for Koszul cycles holding for every ideal of dimension ≤ 1 in a polynomial ring; see Theorem 3.5. In Theorem 4.7 we generalize the “c + 1” lower bound for the Green–Lazarsfeld index of Veronese rings proved in (Bruns et al., arXiv:0902.2431) to the multihomogeneous setting. For the Koszul complex of the c-th power of the maximal ideal in a Koszul ring we prove that th...

متن کامل

Castelnuovo-mumford Regularity for Complexes and Weakly Koszul Modules

Let A be a noetherian AS regular Koszul quiver algebra (if A is commutative, it is essentially a polynomial ring), and grA the category of finitely generated graded left A-modules. Following Jørgensen, we define the CastelnuovoMumford regularity reg(M•) of a complex M• ∈ D(grA) in terms of the local cohomologies or the minimal projective resolution of M•. Let A be the quadratic dual ring of A. ...

متن کامل

On Inverting the Koszul

Let V be an n-dimensional vector space. We give a direct construction of an exact sequence that gives a GL(V)-equivariant " resolution " of each symmetric power S t V in terms of direct sums of tensor products of the form ∧ i 1 V ⊗ · · · ⊗ ∧ ip V. This exact sequence corresponds to inverting the relation in the representation ring of GL(V) that is described by the Koszul complex, and has appear...

متن کامل

A Generalized Koszul Complex. I

Introduction. In [1], the Koszul complex was used to study the relationship between codimension and multiplicity. It also helped us investigate Macaulay modules and rings, and provided a context in which to prove the Cohen-Macaulay Theorem concerning the unmixedness of complete intersections. Now there is a generalization of the Cohen-Macaulay Theorem (known, we believe, as the generalized Cohe...

متن کامل

Poincaré/koszul Duality

We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for En-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2007.07.013